Thainara Munhoz Alexandre de Lima

Email address: tml411@msstate.edu GitHub: https://github.com/thaimunhoz

LinkedIn: https://www.linkedin.com/in/thainara-munhoz/

Website: https://tml411.wixsite.com/limaportfolio

Google Scholar: https://scholar.google.com/citations?user=DZhlmp8AAAAJ&hl=pt-BR

Research Interests: Remote Sensing, GPU computing, accelerated AI, computer vision for Earth observation, deep learning optimization, and domain-specific foundational models.

PERSONAL PROFILE

Thainara Lima is a PhD student in Biosystems Engineering at Mississippi State University and a NASA Early Career Research Fellow. Her PhD project develops scalable AI pipelines for large-scale geospatial data on HPC/GPU infrastructure, with a focus on global algal bloom detection in coastal waters. She explores Vision Transformers, semantic segmentation, and self-supervised learning for Earth observation, while advancing domain-aware foundational models tailored to aquatic environments. Her broader research interests span Aldriven innovation, multimodal learning, and sustainable monitoring solutions that integrate satellite data, computer vision, and high-performance computing for planetary-scale environmental challenges.

EDUCATION

[Aug/2024 - current] Mississippi State University - MSU, U.S.A.

Doctor of Philosophy, Biosystems Engineering – project funded by NASA Early Career Research program

[Feb/2021 – Mar/2023] Brazilian Institute for Space Research - INPE, Earth Observation and Geoinformatics Division, Brazil

M.Sc., Remote Sensing

[Feb/2016 - Jan/2021] University of São Paulo State - UNESP, Brazil

B.Sc., Cartography and Surveying Engineering/Geomatics Engineering, GPA: 3.61/4.00

TECHNICAL SKILLS

- Programming & Data Science: Proficient in Python (NumPy, Pandas, Scikit-learn), R, SQL, and MATLAB for data analysis, modeling, and automation.
- Deep Learning & AI: Experienced with PyTorch, TensorFlow, Keras, and Hugging Face Transformers for computer vision, semantic segmentation, and self-supervised learning in remote sensing.
- Remote Sensing & GIS: Skilled in processing large-scale Earth observation data with Google Earth Engine, QGIS, and ArcGIS; expertise in spectral indices, atmospheric correction, and multi-sensor harmonization.
- High-Performance & GPU Computing: Hands-on experience with HPC clusters and parallelized workflows for large geospatial datasets; exposure to CUDA-enabled GPU acceleration for deep learning model training and optimization.

HONORS AND AWARDS

- AGU Fall Meeting Travel Grant Selected and awarded financial support for presenting research at the AGU Fall Meeting (2020).
- Crea-SP Professional Training Award Regional Council of Engineering and Agronomy of the State of São Paulo, recognizing excellence in professional development (2022).

SPONSORED RESEARCH PROJECT ENGAGEMENT

[2024-2028] Global Algal Bloom Detection System for Nearshore Coastal Waters using Harmonized Landsat-Sentinel-2 data. Period: 2024 – 2028. Source: *NASA Early Career Research (ECR) Program*. (Role: PhD

- Research Fellow). Pl: Dr. Vitor Martins, Mississippi State University (MSU), USA.
- [2021-2023] MAPAQUALI Satellite monitoring of inland water quality. Period: 2021 2023. Source: *Sao Paulo Research Foundation (FAPESP)*. (Role: Collaborator). Pl: Dr. Cláudio Clemente Faria Barbosa, Brazilian Institute for Space Research (INPE), Brazil.
- [2021-2023] Cyanobacteria mapping in Promissão reservoir by hybrid algorithms and images from OLCI/Sentinel-3 sensor. Period: 2021 2023. Source: *Sao Paulo Research Foundation (FAPESP)*. (Role: Master Student Fellow). Pl: Dr. Cláudio Clemente Faria Barbosa, Brazilian Institute for Space Research (INPE), Brazil.
- [Jun/2022 Nov/2022] Water quality analysis from hyperspectral observations. Period: June 2022 November 2022. Source: *Sao Paulo Research Foundation (FAPESP).* (Role: Master Student Fellow). Pl: Dr. Cláudio Clemente Faria Barbosa, Brazilian Institute for Space Research (INPE) and National Research Council of Italy Electromagnetic Sensing of the Environment (CNR-IREA).
- [2017-2020] Tropospheric Modeling: Study and Analysis of Different Models. Period: 2017 2020. Source: *Sao Paulo Research Foundation (FAPESP).* (Role: Scientific Initiation Fellow). Pl: Dra. Daniele Barroca Marra Alves, Sao Paulo State University (UNESP), Brazil.
- [Dec/2018 Mar/2019] Analysis of different tropospheric models considering different regions. Period: December 2018 - March 2019. Source: Sao Paulo Research Foundation (FAPESP). (Role: Scientific Initiation Fellow). Pl: Dra. Daniele Barroca Marra Alves, Sao Paulo State University (UNESP) and University of New Brunswick.

WORK EXPERIENCE

- [Jun/2025 Aug/2025] MSU/USDA Graduate Summer Research Experience in High-Performance Computing and Agriculture, *High Performance Computing Collaboratory at MSU.*
- [Aug/2024 now] Graduate Assistant, Department of Agricultural and Biological Engineering, Mississippi State University, USA
- [Oct/2023 Jun/2024] GIS Analyst, Agrotools, Brazil
- [Mar/2023 Sep/2023] Crop Intelligence Analysis, MERX, Brazil
- [2021 2023] Research Student, Instrumentation Laboratory for Aquatic Systems LabISA, Brazil
- [06/2022 11/2022] Research Student, National Research Council of Italy Electromagnetic Sensing of the Environment (CNR-IREA), Italy
- [2019 2020] Intern, AYA Engineering Company, Brazil
- [2019 2020] Volunteer Work Leader in Executive Presidency, Núcleo Bauru, Brazil
- [2019-2020] Volunteer Work Project Manager, EJECart Junior Cartographic Engineering Company, Brazil
- [2018-2019] Research Student, University of New Brunswick UNB, Canada

TRAINING

- [2025] Introduction to Machine Learning Computer Science Engineering, MSU
- [2024] Artificial Intelligence applied to Geotechnologies AmbGEO
- [2024] TensorFlow 2.0: Deep Learning and Artificial Intelligence Udemy
- [2022] Neural Network: Deep Learning with PyTorch Alura
- [2022] Machine Learning: Classification with SKLearn *Alura Courses*
- [2022] Decision Trees: Diving deeper into Machine Learning models Alura Courses
- [2022] Atmospheric Correction of Satellite Images RadarGeo
- [2021] Digital Image Processing in R RadarGeo
- [2020] Advanced Webinar: Forest Mapping and Monitoring with SAR Data *NASA-Applied Remote Sensing Training ARSET*
- [2020] Understanding Phenology with Remote Sensing NASA-Applied Remote Sensing Training ARSET
- [2019] Complete Google Earth Engine for Remote Sensing and GIS Udemy

PUBLICATIONS

- [2025] Hester, D.; Martins, V.S.; Ferreira, L.B.; Lima, T.M.A. On the use of deep learning semantic segmentation for land use and land cover classification at very high spatial resolution a review of data sources, algorithms, and future directions, 2025. *In progress*.
- [2025] Lima, T.M.A.; Martins, V.S. Landsat-Sentinel-2 algal bloom mapping using Vision Transformers: model

- description, implementation, and examples, 2025. In progress.
- [2025] Lima, T.M.A.; Martins, V.S.; Paulino, R.; Caballero, C.; Barbose, C.C.F.; Ashapure, A. AQUAVis: Landsat-Sentinel Virtual Constellation of Remote Sensing Reflectance (Rrs) Product for Coastal and Inland Waters. Science of Remote Sensing, 2025. *Under review.*
- [2025] Caballero, C.; Martins, V.S.; Paulino, R.; Lima, T.M.A.; Butler, E.; Sparks, E. Sentinel-3 Coastal Analysis Ready Data (S3CARD): An Operational Framework for Coastal Water Applications. Water Research, 2025.
- [2025] Maciel, D.A.; et al. A bio-optical database for the remote sensing of water quality in BRAZil coAstal and inland waters (BRAZA). Scientific Data, v. 12, 2025. https://doi.org/10.1038/s41597-025-05609-1
- [2025] Chasles, R.G.; et al. Accuracy assessment of PlanetScope SuperDove products for aquatic reflectance retrieval over Brazilian inland and coastal waters. ISPRS Journal of Photogrammetry and Remote Sensing, v/ 227, 2025. https://doi.org/10.1016/j.isprsjprs.2025.06.036
- [2025] Lima, T.M.A.; Martins, V.S.; Paulino, R.S.; Caballero, C.B.; Maciel, D.A.; Giardino, C. A general bandpass adjustment function (SBAF) for harmonizing Landsat-Sentinel over inland and coastal waters. Science of Remote Sensing, v. 11, 100225, 2025. https://doi.org/10.1016/j.srs.2025.100225
- [2025] Lima, T.M.A.; Barbosa, C.F.C.; Nordi, C.S.F.; Begliomini, F.N.; Martins, V.S.; Watanabe, F.S.Y.; Wanderley, R.L.N.; Paulino, R.S. A novel hybrid approach cyanobacteria mapping approach for inland reservoirs using Sentinel-3 imagery. Harmful Algae, v. 144, 102836, 2025.
- [2025] Paulino, R.S.; Martins, V.S.; Novo, E.M.L.M.; Barbosa, C.C.F.; Maciel, D.A.; Wanderley, .L.N.; Portela, C.I.; Caballero, C.B.; Lima, T.M.A. Generation of robust 10-m Sentinel-2/# synthetic aquatic reflectance bands over inland waters. Remote Sensing of Environment, v. 318, 114593, 2025. https://doi.org/10.1016/j.rse.2024.114593
- [2025] Caballero, C.B.; Martins, V.S.; Paulino, R.S.; Butler, E.; Sparks, E.; Lima, T.M.A.; Novo, E.M.L.M. The need for advancing algal bloom forecasting using remote sensing and modeling: Progress and future directions. Ecological Indicators, v. 172, 113244, 2025. https://doi.org/10.1016/j.ecolind.2025.113244
- [2023] Begliomini, F.N.; Barbosa, C.C.F.; Martins, V.S.; Novo, E.M.L.M.; Paulino, R.S.; Maciel, D.A.; Lima, T.M.A.; O'Shea, R.E.; Pahlevan, N.; Lamparelli, M.C. Machine Learning for cyanobacteria mapping on tropical urban reservoirs using PRISMA hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2023.09.019
- [2023] Pellegrino, A.; Fabbretto, A.; Bresciani, M.; Lima, T.M.A.; Braga, F.; Pahlevan, N.; Brando, V.; Kratzer, S.; Gianinetto, M.; Giardino, C. Assessing the accuracy of PRISMA L2d reflectance products in globally distributed aquatic sites, Remote Sensing. https://doi.org/10.3390/rs15082163
- [2023] Lima, T.M.A.; Giardino, C.; Bresciani, M.; Barbosa, C.C.F.; Fabbretto, A.; Pellegrino, A.; Begliomini, F.N. Assessment of estimated phycocyanin and chlorophyll-a concentration from PRISMA and OLCI in Brazilian inland waters: A comparison between semi-analytical and machine learning algorithms, Remote Sensing. https://doi.org/10.3390/rs15051299
- [2022] Lima, T.M.A.; Santos, M.; Alves, D. B. M.; Nikolaidou, T.; Gouveia, T.A.F. Assessing ZWD models in delay and height domains using data from stations in different climate regions, Applied Geomatics, https://doi.org/10.1007/s12518-021-00414-y.